OKLAHOMA STATE UNIVERSITY

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING SCHOOL OF MECHANICAL AND AEROSPACE ENGINEERING

ECEN 4413/MAE 4053 Automatic Control Systems Spring 2008

Midterm Exam #1

Choose any four out of five problems. Please specify which four listed below to be graded: 1)___; 2)__; 3)__; 4)__;

Name : _____

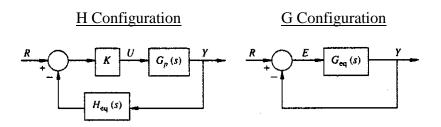
Student ID: _____

E-Mail Address:_____

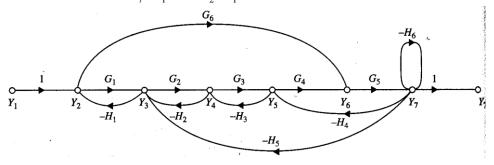
Problem 1:

Given a system described by the transfer function

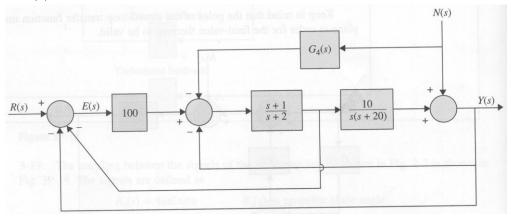

$$H(s) = \frac{Y(s)}{X(s)} = \frac{-5s+6}{s^2+4s+13}$$


with initial conditions and input: y(0) = 3, $\frac{dy(t)}{dt}\Big|_{t=0} = -2$, $x(t) = e^{-4t}u(t)$, where y(t) is the

output response and x(t) is the input signal. Find y(t) and steady-state output via final value theorem.


Problem 2:

Using *block diagram reduction technique* to rearrange the following block diagram into the equivalent *H* and *G* configurations of the feedback control system shown below.


<u>Problem 3</u>: Find the transfer functions Y_7 / Y_1 and Y_2 / Y_1 of the SFG shown below.

Problem 4:

The block diagram of a feedback control system is shown below.

- a) Derive the transfer functions of $\frac{Y(s)}{R(s)}\Big|_{N=0}$, $\frac{Y(s)}{N(s)}\Big|_{R=0}$.
- b) The controller with the transfer function $G_4(s)$ is for the reduction of the effect of the noise N(s). Find $G_4(s)$ so that the output Y(s) is totally independent of N(s).

Problem 5:

Let $\overline{y}(t)$ be the unit-step response of a linear time-invariant system. Show that the impulse response of the system equals to $\frac{d\overline{y}(t)}{dt}$.